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1 . Introduction

Many algorithms have been developed , mainly in the last two
decades , fo r the solution of mathematical programming problems .

However , following the now well known parametric analysis in linear
programming [12,81,95 ,113] and a fairly comprehensive treatment of the
quadratic parametric problem [17 ,22 ,601, until very recently, there
has been only sporadic activity in the study of the solution
sensitivity of general nonlinea r mathematical programs to
perturbations of the problem parameters . This paper gives a concise
survey of the state of the art in that area. 

_ 
-

As the next two examp les demons tra te , the solut ion of very simp le
ma thema t ical programs may not vary at all or may change drastically
for arbi trarily small perturbations of the problem parameters.

Example 1.

Consider the nonlinear program :

~~ 
~ 

+ (x
2 

+ ~) 2

—1—
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The analytical solution of this problem is easily seen to be:

( ( I + c ) / 2 , — ( l + c ) / 2 )  c < —1

x ( c)  = (x
1

(E)  , x 2
( c ) )  = (0 ,0) — ‘ � c � 1

( ( c - l )/ 2 , ( c — l ) / 2 )  c > I

It Ls clear t ha t  x ( c )  is p iecewise  l in e ar , con t inuous , and

d i f f e r e n t i a b l e  eve rywhere except f o r  r ± 1. Jr  i s  r e a d i l y shown that

the optimal value func t ion  of this prob lem . f *(c )  = f [ x ( c ) , c J ,  is twice

differentiable everywhere except for c ± 1 , where it is only once

dif fer enti able.

Unfor tunately, as the next example illustrates , the solutions of

mathema tical programs do not always behave so nicely.

Examp le 2 .
m m

s. t .  -l~~~~x 1

The solution of this problem is given by x~ 1 
-l if c > 0 ; x*1

can

be chosen as any value in [-l ,cc) if c = 0; and if c< O , there is no

finite solution of this problem . Thus , as c varie s in a small

neighborhood of the origin in E’, the solution may be f i n ite and

unique , may be unbounded , or there may be infinitel y many solutions .

It should be clear from these two simple examp les that very small

perturba tions of the parameters of a mathematical program can cause a
wide variety of results . The purpose of this paper is to summarize

and illustrate the work that has been done to date in 1) providing

conditions under wh ich the solut ions of nonlinear programs are locall y

well-behaved , and 2) estimating solution properties as a function of

problem parame te rs .

—2—



_

T—407

2. Objective Function and Constraint Set Contini~i~y

Some of the ear liest work in sensi tivi ty analysis for nonlinear

programming was conc erned wi th the variation of the opt imal obj ec ti ve
funct ion value wi th changes in a parameter appearing in the right-hand

side of the cons tra ints , i.e. involving problems of the form :

minim ize f(x), subject to g(x) >

where f: E
n
~ E’, and g: En~ E

m
. The theory of point-to-set maps

(cf. Berge [13]) has been used for much of the anal ys is of this
problem . Hogan [67) has provided an excellent development of those

proper ties of point-to-set maps which are especiall y useful in
deriving such results .

In the next sub-section we present several definitions and proper ties
rela ting to point-to-set maps which are needed in a number of important

results.

2.1 Point-to-Set Maps

Given two sets X and Y, a point-to-set mapp ing , ~~, f rom X to Y is

a func t ion  which associa tes  wi th  every poin t  in X a subset of Y.

Following Berge [13] , we say that the point-to-set mapping ~ is

continuous if it is both upper semi-continuous (usc) and lower

semi-continuous (lsc) in X . These last two notions are established by

the following def init ions .

Definition 2.1. Let ~ be a point-to-set mapping from X to subsets of Y.

i) 4 is lsc at x c X if , fo r each open set S~~ Y satisfying

Sfl~ ( x )  ~ ~~, there exists a neighborhood N of x ,

such that for each x in N(x ) ,  ~~x)flS ~ 0.
0

ii) ~ is usc at x c X if , fo r each open set S~~ Y containing0
4I(x ) ,  there exists a neighborhood N of x , N(x ), such

0 0 0
that for each x in N (x ) ,  41(x) CS.

C)

—3— 

~~1.~~__



_ _ _  

_______________ -- 

1!

T— 4 O 7

An .~1ternative definition of seuii-cont iriuity for point-to—set

maps is based on the convergence of sets in the range space Y. Let

{ X~~~ be any sequence of points in X such that x~~ ~~, and let ~ he a

point- to-set mapping from X to subsets of Y.

Defini tion 2.2. 1) ~
‘ is lsc (or open) at ~cX if , for each ~c-~~~) ,

there exists a v a l u e  m and a sequence iy ) c Y  such

tha t y c f ( x ) fo r  each ti .‘ m and y -
~ 
y.

ii) 41 is usc (or closed) at ~cX if Yn
E
~~
(X) and y-*

together imply that ~~~~~~~

Furthermore , if 41 is lsc at each point of X , then it is said to

be lsc in X ; and if 41 is usc at each point of X with 41(x) compact for

eac h x , then 41 is said to be usc in X. Us ing  these d e f i n i t i o n s , the

following results are easily established for real—valued functions

(cf. Berge [13]). Kummer [74] has obtained similar results and has

applied them to the particular case of quasi- convex programs .

Theorem 2.3. If f is a real-valued usc (lsc) function defined on

X x Y and if t is a lsc (usc) mapping from X into Y such that for

each x , 41(x) ~ 0, then the (real-valued) function f*, de f ined by

f*(x) = inf {f(x ,y))

is usc CIsc). ycY

Theorem 2.4. If f is a continuous real-valued function defined on the

space V and 41 is a continuous m app ing &f X into V such that ~(x) ~~
‘ 0.

for each xc X , then the (real-valued) function f* , defined by

f*(x) = mm {f(y)}
yr 41(x)

is continuous in X. Furthe rmore, the map ping F, def ined by

F(x) = ty :VL (x) f(y) =

is a usc mapping of X into Y.

Conditions which imply the co n t i n u i ty  of tile solution of a

mathemat ica l  program have been given by Dantzig, Folkman , and

Shap iro [25], and by Robinson and Day [102J. Letting

—4—
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f be a mapp ing from a metric space K to E
1
, w ith H (c)CK , and de t ining

M(f:H(C)) = ~xc1I (r): f(x) 
= inf f(v): VCH(c)11 Dantzig, et. al. obtain

conditions on the variation of f and H which are necess~1ry and sufficient

for M( f :H (c ) )  to vary in a closed manner .  When H is def ined by linear

inequalities , they obtain under appropriate conditions , that M(f:H(c)) is

a closed function . Unde r this same hypothesis , letting M* (f:H(c)) denote

the mapping M(f:h(c)) when it is a singleton , they obtain conditions

which yield the continuity of M* (f:H(c)) as a function of the

parame te r c.

Iheo re rn 2 .S.  Let H be a po in t - t o - se t  mapping from the metric space

T to the set of subsets of E
n
, with H(c) a closed set for each c in

T. Let T’ = je in T: H(c) ~ O}. Suppose H(c) is connected for each

c in 1’ , arid for some c~ in T’ , H(r*) is compac t. Furthermore ,

assume that for every sequence ~r }C  T ’ , r - ~r* implies

u r n  H(c ) = H(c*). Then , if  f c C ( E ’~) ,  the mapping c-s-M* (f:H(r))
n-too n

is continuous at r~ jf c* is in its domain.

If g is an affine function from En to Em, denote by H(g) the

set {xt E
n
: g(x) > 01. The function g is said to be nondegenerate

~ ~h respect to the set RCE~ if H(g)flR has a nonempty interior

no component of g is identically zero . The continuity of

M(f:H(g)flR) and M~ (f:H(g)flR) as functions of g are given by the

following theo rems.

Theorem 2.6. If f is continuous and R is closed and convex , then

.9(f:H(g)flR) is closed at every nondegenerate point g.

Theorem_2.7. If f is quasiconvex or H (g)flR is hounded , then

“l- ’(f:H(g)flR) is continuous at a nondegenerate point g of its

domain.

L _ _ _ _ _ _  .. - -.--— . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Robinson and Day [1021, considering a gene ral constraint set , R(e),

provide conditions which guarantee the continuity of the point-

to-set mapp i ng whose range is the set of solutions of the

mathematical program

minimize f(x ,c)

s.t. xcR(c)

c in T ,

where R(c) represents a constraint set as a function of the

parameter c , and X and T are topological spaces. To that end ,

let f*(r) = mm {f(x ,c): xcR(c)}, and define the mapping S:T-~X

by s(c) = ix: f(x,c)< f~ (c))flR(c). Assume R(r) is continuous on I.

Theorem 2.8. Let X be locally convex and let R # ~ be convex—valued

on T. If f(x ,e) = min {u(x,c), o(r)}, where u cC(X x T) and is

strictly quasi-convex in x for each fixed c , and ~cC(T), then

S is continuous and convex valued on T.

2.2  Right—Hand Side (RIiS) Perturbations

In this section we will be concerned with problems of the fo rm:

minimize f(x), s.t., g(x) > c , P
1

(c)

where f :  E~ — .E
1 
and g: E

n_.Em. Associated with problem P
1

(c) are the
following four sets :

i) the feasible region . R(c)={x: g(x) >

ii) the set B ={c:R(c) ~
iii) a se t assoc iated with the interior of the feas ible region,

1(c) = fx:g(x) ‘

iv) the  optimal  value func t ion , f * (c)  = inf ~f(x):xcR(c)}.

One readil y sees that i), iii) and iv) may each be viewed as a point—
t o-s e t  mn~ pping . I t  is prec isel y this obse rva tion which has been
exploi ted in characterizing the variation of both the solution and

the optima l objective function value as functions of the parameter c .

—6—
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The foll owing three theorems , due to Evans and Gould [ 3 4 1 ,

provide conditions for the stability of the constraint set , i.e. the

feas ible reg ion R(c), as well as for  the con tinuity of the op t imal

objective function . In the statements of these results , we w i l l

deno te by R a point-to-set mapp ing from the set B C Em to the set of

all subsets of E~~, wi th the image of c in B given by R(c). The

interior of the set B is denoted by Int(B), and the clos ure of 1(c) is

denoted b y 1(c) .  Assume g is continuous .

Theorem 2.9. i) The mapping R is usc at c if and only if there exis ts a

vector c ’ < c such that R(c’) is compact.

ii) If R(r) is compact and 1(c) ~ ~~, then R is ls c at c if and

only if 1(c) = R(c).

*
Theorem_2.10. 1) If f is lec and R is usc at c , then f is left

continuous (lsc) at ~~.
*

ii) If 1(c) � 0 , f is usc and R is lsc at c , then f is

right continuous (usc) at c.

Theorem 2.11. Suppose c is in Int(B) and that f is continuous , f~cC(E
t1) .

Also assume that there exists a vector c ’ < c such tha t R( c ’) is compact,
and that 1(C) = R(c). Then f* is continuous at e.

Theorem 2.11 is related to the second result of Berge, i.e., Theorem

2.4, in that Evans and Gould have given conditions which imply the

hypo theses of Berge ’s theorem. The question of the stability of the

set of optimal solutions and the stability of the optimal objective

function value have been addressed by a number of authors. Greenberg

and Pierskalla 158] , referring to p rob lem P1, have shown that the point—
• to—set napping ~~, which maps Em to subsets of En and is defined by

41 (c) = {x~R(c):f(x) = f*(c)} is usc at c if R is usc at c and if f*
is continuous at c. This result is very similar to one given b y

Dantzig, Folkman , and Shapiro [251 and by Berge [13]. The essential

differences among these results lie in the use of semi—continuity in

[58] and the closedness of maps in [25], while the conclusion drawn in

-7-
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[13] is based on the cont inuit y of k.

Considering t he  p e r t u r b a t i o n  f u n c t i o n  or convex programming

problems , which is cent ral to the construction of decomposition algo-

rithms for large—scale nonlinear programs , Hogar 1681 established

conditions for its continuity. ‘[hat result has been extended to the

case in which the parameter of the problem appears in the objective

f u n c t i o n  as well as in the constraints. These results are given

in the next two theoremb .

~~~~~~~ 
Let f*(c) = inf { f(x ) : x X , g(x) > c J . If

i) X is a compact convex set ,

ii) f is Continuous on X ,

iii) is lsc on X, and

iv) each g. is strictly concave on X.

then f* is continuous on its domain.

T1’ieorem2.l3. Let f*(c) = inf (f(x ,c): xcX , g(x ,c) > 0). If

i) X is a compact convex set ,

ii) f and g are both continuous on X , and
iii) g is strictly concave on X for each c.

then f* is continuous on its domain.

More recently,  Clarke [21] has shown that if X is a Banach space

and f is locally Lipschi tz  then programs of the form P
1

( c ) ,  with x e S C X

are “normal” in the sense that  generalized Kuhn—Tucker  c o n d i t i o n s

can be shown to pe rta in , even in the absen ce of d i f f e r e n t i a b i l it y and
convexity assumptions. Clarke terms the program

mm f(x)

s.t. g (x) > c i = 1,...
n P

2
(c)

xcS , S closed in E
-I

—8—
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“normal” if f( arush— Kuhn—T u cker  type mult i pl iers  exist  fo r  any x which solves
P
2
(t). P

2
(c) is said to be “cairn” if 41(r) is finite and

l im inf 1 4 1 ( c ’)  — 41(c)]! ~e — c~ > — 2 1)

where

inf{f(x):xcS , g(x) > c} R(c) � 0
=

‘f’ oC R ( c ) = O
Note that the Lmit quotient in (2.1) is a form of stability also used

by Rockafell ar [105]. Using these notions , Clarke showed that if P
2

(c)
is calm it is also normal and if 41(c) is finite in a neighborhood of

c = 0 , then P
2
(t) is calm and normal for almost all r in a neighborho od of

of 0. Conditions sufficient for the calmness (and hence the normality)

of ~~2
( t )  are given in the following theorem.

Theorem 2 .14.  I f

i = 1,... ,m , a re convex ,

ii) S is convex and bounded ,

iii) f is bounded and Lipsch itz on S, and

iv) there ex ists a po int xcS such that g (x )

then P2
(c)  is calm.

Addit iona l stability results for right hand side per turba tions

are discussed in the next section where we summarize the results that

have been achieved in the area of differential stability. In Section

5. fi rst- and second-order sensitivity of the objective function under

ri ght hand side perturbations is indicated.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. Dilferential Stah l  1.ity

I n  this section we concentrate on theory that has been developed

to analyze various differentiabili ty properties of the optimal value

function . We beg in with a brief discussion of seve ral well known

constraint qualifications , one of which is often involved in obtaining

some of the results.

3.1 Constraint_Qualification s H

The constraint qualifications used in mathematical programming

are regularity conditions which are generally imposed to insure that

the set of Karush—Kuhn—Tucke r multipliers corresponding to the optimal

solution of a mathematical program is nonempty . We present here

five qualifications which are frequently app lied. These and a number

of others are treated in some detail by Mangasartan [79 1 .  Throughout

this discussion , we shall assume the constraint set R ~x~E
’1: g(x) “ 0.

h(x) = 0), wh ere g : E~ ÷E
m 

and h : E
n 

~~~~ Define B(x) {i:~~~(x )  = 0~~.

CQ1. The Mangasarian—Fromovitz constraint qualification is said to

hold at a point x*CR if:

i) there exists a vector YCE such that Vg .(x*) y > 0

for  all icB(x *), Vh j x *) y = 0 for j  = l,...,p, and
ii) the gradients {Vh .(x*), j  l,...p,} are linearly independent.

If the g .  are concave (or even pseudo—concave) funct ions  and the

h . are a f f ine , then CQ1 is equivalent to the well—known Slater
condi tion , a general form of which we give as CQ2.

—10—
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Definition 3.1. If the function f: E
n 

f~
l 

is difle rent~ able on the

convex set S and f(y) > f(x) for all x , v S . w i t h  ‘ .‘ i ( x) ( y — z )  > 0, t h e n
f is said to be psuedo—convex on S. ( I l i L ’  f u n c t i o n  f is said to ho

pseudo—concave if —f is pseudo—convex .)

CQ2. The Slater constraint qualification is sati~~fied at x*CR ii h .

is a f f ine for  each j, g1 is pseudo—concave and the re exists a point

�~cR with g.(x) > 0 ror eacu i in 13(x*).

CQ3. The linear independence assumption is said to hold at x*CR if

the grad ien ts {V g.(x*), i cB(x *); Vh .(x*), j=1 ,... ,p} are linearly
independent.

CQ4. If there are no equality constraints and ~~u .Vg .(x*) = 0 has no

icB(x *)
non—zero solution u~ > 0 for  x*cR , the Cottle constraint qualification

1~~~~

is said to hold at x*. (In the absence of equality constraints , CQ1
is equivalent to CQ4.)

CQS . The Kuhn—Tucker constraint qualification is satisfied at

x*CR if , for each non—zero vector satisfying Vg.(x*)z > 0 for each

i c B ( x *) and Vh (x*)z = 0, j  = l,...,p, z is tangent to a once—dif—
ferentiable arc originating at x* and contained in R.

The relationships that hold among these qualifications , in

addition to those already men tione d , are that CQ3 implies CQ1 which ,
in turn , is sufficient for CQ5. For a proof and further discussion

of the relationships among these constraint qualifications see

(9 , 611.
Robinson (101] has shown the equivalence of CQ1 and a form of

local stability of the set of solutions of a system of inequalities.

4 Gauvin [49] has shown that CQ1 is both necessary and sufficient for

jj the set of Lagrange multiplier vectors corresponding to a given local

-11-
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so lution of a general NL P p r o b l e m  to be nonempty ,  compact and convex.

In addition , Gauvin and Tolle 1~ 01 establish that CQ1 is preserved

unde r RHS perturbations .

3.2 Ditferenti al Stabi~~~ y_of the Extrernal Value Function

One of the earliest characterizations of the differential stability

of the extrema l value function of a mathematical program was provided

by Dauskin [23 ,24]. Add~’cssing the problem minimize f(x,o) subject to

xcR , R some topolog ical space , Danskin derived conditions under which

the directional derivative of the extrema l value function exists and

also determined its representation .

Definition 3.2. The (one-sided) directional derivative of the function

f(x) in the direction z is defined to be:

D
~
f(x) u r n  [(f(x’i’~ z) - f (x))/~ 1

if the limit exists.

Theorem 3.3. Let R be non—empty and compact and let f and the partial

de rivatives ~f/ ~ c . be continuous . Then , at any point e in E
k 

and for any

direction zcE
k
, the directional derivative of f~ exists and is given by

D~ f*(c) = mm ZV
e 

f ( x ,c ) ,
xcS (t)

where 5(c) = {x:x minimizes f(x,c) over

This result has wide app licability in the sense that the constraint

space , R , can be any compact topolog ical space. It has been extended

by a number of authors , in c l ud i n g  Demyanov and Rubinov j27] , to other

spaces and a variety of functional forms . The principal restriction of

this result is tha t the set R does not vary with the parameter c .

However , since inequality and equatity constraints can be “absorb ed”

into the’ objective function of a program through the use of an

appropriate auxiliary function (Lagrangian , penal ty function , etc.),

Danskin ’s result is readily a~plicab 1e to auxiliary function methods .

It can ils o be read ily app lied to the dual of a convex program with

ri ght hand side perturbations . For the special case in which R is

detined by inequalities , g( x,r) > 0, and f and g are convex on S,

—12—
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Hogan (66 ] has shown that D f*(t) exists and is f inite for all

zeE k. The following theorem presents the details of this result for

f*(e) = inf {f(x,c ) :  g (x ,c) >O } , wuere X is a subset of E
n
. ‘The

xcX
Lagrangian for this p roblem is defined as L(x,u,c) f ( x ,c) — ug(x,c).

For convenience and without loss of general ity ,  we shal l  assume tha t the

parameter value of interest is c = 0 , unless otherwise s ta ted .

Theorem 3.4. Let X be a closed and convex set. Suppose f and —g are

convex on X for each fixed c and are continuous ly d if f eren tiab le on X x

a neighborhood of c = 0 in Ek. If S(O) E {xcX: g(x,0) > 0 and f*(O) >

f ( x ,O)} is nonempty and bounded , f*(0) is finite , and there is a point

ytX such that g(y,0) > 0, then D f*(0) exists and is finite for all
z

zcE , and

D f*(O)~. mm max zV~L(x ,u~c) = mm max {z(V f(x,O) — u~/ g(x ,O ) ) ) ,
xcS(0) ucK(x ,0) xcS(O) ucK(x,O) t

whe re K ( x ,0) is the set of optima l Lagrange mulitp liers for  the given

xcS(0).

Some recen t investigations of this sor t have foc used on the ex tremal

value function inequality—equality constrained optimization problems

with right hand side per turba tions , of the form

maximize f(x)

s.t.. g(x) > c . i = 1,... ,rn
— i P (c)

h(x) = c . = i,... ,p.

Let R(c) = fx: g (x) > c ., i = 1, . . . , m}fl{x: h (x) = E
•+m~ ~ 

=

and let

inf {f(x): xcR(c)} R(t) # 0

t f*(c) =

+00 R( c )  = 0 .

We al so de fine , f or R ( c )  ~ 0, S(c) = {xcR (c): f(x) = f*(t)}, and the

Lagr-ingian L(x,u,w ,c) f(x) — u[g(x)—c ] + wfh(x) —r~~. 
(
~iven these

d~ f l n i t  ions , Gauvin and Tolle [50] have proved the following continuity

p r o p e r ty  of f*(c).

-13- 4-
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Theorem 3.5. If R(O) ~ 0, with R(c) uniformly compact near c = 0, and

itT CQ1 holds for some x*cS(0), then f*(c) is continuous at c = 0.

Fiacco [45 ] has recently shown that this result holds for tlio

general p rob lem

mia f(x,c)

s.t. g(x,c) > 0  P
4

(c)

h(x,c) = 0,

where the prob lem functions are C in (x,c), R(c) and S~t) are

defined to be the feasible region and solution sets of

respec tively, and where the parameter c is a vector in EK.
In the absence of equality constraints , Rockafellor [103] has shown

that , under certain second—orde r conditions , the function f*(c) of

P
3
(c) satisfies a stability of degree two , i.e., in a neighborhood of

c = 0 , there exists a twice differentiable function 41: E
m+ E1’ with

f*(c) > 4(c) and f*(0) = 41(0). Under this stability property, bounds
on the directional derivatives of f* (when they exist) can be derived.

For convex programming problems of the form P
4

(c ’, Gol’stein [57] has

shown that a saddle point condition (summarized subsequently) is

satisfied by the directional derivative of f*~ Gauvin and Tolle

[50], no t assuming convexity ,  but limiting their analysis to problem

extend the work of Gol’stein and pr ovide sharp bounds on
the directional derivative of f*, also without requiring the existence

of second order derivatives. These results were extended by Fiacco

and Hutzler [441 to the more general problem P4(c) and are presented

next.
Let L(x,u,w,c ) f (x ,g) — ug(x ,c) + wh(x,c) denote the usual

Lagrangian of Prob lem P
4
(c) and let K(x,0) denote the set of Kuhn—

Tucker vectors (u,w) corresponding to a solution x of P4
(c) at c = 0 ,

let Q(z) = (f*(~z) — f*(O))/~~,w~iere zrE
k 

is a unit vector . As

H above , R(c) denotes the feasible region , S(c) thc solution set , and

the functions f , g, h are assumed jointly once continuously differen—

tiab le fri (x,c). 1~ e following results hold [44] for Problem P
4

(c ) .
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Theorem 3.6. If R(0) 
~ 0, R(c) is uniformly compact near c = 0, and

CQ1 holds for some x*cS(0) then, for any zEE k ,

u r n  inf Q(z) > mm zV L(x~ ,u ,w,0) (3.1)
(u,w)eK(x*,0) C

The next corollary , following immediately from the theorem , gives
a result that is weaker, but useful in the sequel.

Corollary 3.7. If R(O) ~ 0 , R(c) is unif ormly compact near c = 0,

and CQ1 holds at each xcS(O) then , for any ze Ek,

lim inf Q(z) > inf mm zV
~
L(x,u,w,O) (3 .2)

xeS(0) (u,w) cK(x ,O)

Theorem 3.8. Unde r the conditions of Corollary 3.7, for any
kacE

lim sup Q(z) < inf max zV E L(x ,u ,w ,O) 
3 3xc S(0) (u,w)cK(x,O)

Corollary 3.9. If , in the hypo theses of Corollary 3.7 , CQ1 is rep laced

with CQ3 , then for each zcEk, r) f* (O)  exi sts and

D f*(O) = inf zV L(x,u(x),w (x) ,O)
Z xcS(O) (3.4)

where (u(x),w(x)) is the unique optimal Lagrange multiplier vector

associated with xeS(0).

The following theorem obtained by Fiacco and Hutzler [44] corres-
ponds , under slightly dif fe rent assumptions , to results obtained by

Gol’stein [57] and Hogan [66], for a general class of problems that
are convex in x.

Corol lary 3.10. Let —f and g., i = 1,... ,m , be convex f u n ctions

in x, and let the functions h ., j  = l,...p , be affine in x , with
1

all f unct ions jointly C in (x ,c). If R(O) ~ 0, R(c) is uniformly

compact near ~: = 0 , and CQ1 is satisfied for each xcS(O), then D f*(O)

exists for each zcEk, and
I) f*(O) = inf max zV L(x,u ,w,O)  3 5)xc S( O) (u,w ) c K(x ,0) t• (

-15-
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Lenpio and Maure r [77] have obtaine d similar bounds under analogous

assumpt ions t h d t  an’ requi r~’d to handle general pertur ned infinite diinen—

sional programs of the form minimize f(x,c), subject to xcR
1 

and
where R

1 
and it

2 are arb itrary closed convex sets. Ausleuder [10] has

also obtained these bounds for the right—hand side pertubation

prob lem P
3

(e) , extending the results of Gauvin and Tolle [50 ] by us ing

a weaker form of the Man~ asarian—Fromovitz constraint qualification .

This allows him to replace the di fferentiability assumption on the

objective and inequality functions with the weaker requirement that

t~ ey be locally Lipschitz.

Altho ugh we are focusing attent ion on programs for which the

spaces involved are finite dimensional , we note that most of these

sensitivity results have been extended to infinite dimensional programs .

For example , Maure r [8 2 ,831 has recently obtained a characterization

of the  d i rec t ional  der iva t ive  of the ext r emal  value f u n c t i o n  subgrad i en t

fo r  prob lem P
4

( c ) ,  and has applied his  results to a class of optimal

cct”~~rol problems .

3.3 Lipschitz Properties

In t~tis section , we will conside r problem P
1
(c). Following the

notation used in Section 2, recall that R(e) (xc Eri
: g(x) >

B {c in E’~: R(c) ~ 0) , and f*(c) inf {f(x): xcR(c)}. In addition ,

let S(c ,6) (xcR(c) :f(x) < f~~ (c )  + 6 for 6 > 0).

Stern and Topkms [111], defining a notion of linear continui ty ,
establish conditions under which f*(C) satisfies a Lipschitz condition .

Unde r convexi ty ass umpti ons on the prob lem f unctions , they also show

that S(c ,6 ) ,  the set of 6—optimal solutions , is continuous .

Definition 3.11. The real—valued function f(x) is said to satisfy a

Lipschitz condition on a se t S i f there exis ts a value M > 0 such that

f(x)—f(y) J ,~~ 
>1 • x—y~ , for all x, ycS.
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Definition 3. 12. Suppose 41 i s  a point—to—set m a p p i n g  I rum YC E
flI 

to sub-

sets of E
n
. Then 41 is said to be uniformly linearly continuous on YC Y

if there exists a value M > 0 such that inf J I z— x j I < M y—y~ 
, f or all

— — 
xc41(y)

zc41 (y) and for all y,ycY.

Theorem 3.13. Let ~CB and suppose R(~ ) is bounded for c in B. If R(c)

is un i f ormly linearly continuous with constant K on Bfl.{c :c < c} , and
if f satisfies a Lipschitz condition with constant M on R(e), then f*(c)

satisfies a Lipschitz condition with constant KM on Bf’i{e:c < c }.

Theorem 3.14. If 1, and —g., i = l ,...,m, are strictly quasi—convex ,

11(e) is bounded, and 1(e) 
~ 0 , then S(c ,6) is continuous at t for each

6 > 0.

Hager [61] has recently ob tained Lipschitz results for quadratic programs
with unique solutions. Hager obtained the Lipschitz continuity of

the solution of such programs under the hypothesis that the gradients

of the binding constraints satisfy an independence criterion. Under

these same conditions , the Lipschitz continuity of the (unique)

Lagrange multiplier vector is also obtained. In both instances,

Hager provides an estimate of the Lipschitz constant.

-17-
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4. Jm,pl t c i t  Funct ion Theorems

There are many forms of implicit funct ion theorems which have found

extensive app lication in functional analysis. These theorems treat

the general problem of solving an equation of the form

f(x ,y) = z (4.1)

f u r  x in terms of y and z. The classical results in this area die by

now well known , For comp le teness , we present two forms of th e imp lic it

function theorem. A mote complete discussion of these theorems is

contained in [16).

n+m nTheorem 4.1 . Suppose f: E -
~ E is  a c o n t i n u o u s l y d i f f e r e n t i a b l e  mapp ing

whose domain is T. Suppose (~~ ,$7) eT , f(~~,~~) 0, and f ’ (x ,O) = 0 implies

x 0. Then there exists a neighborhood of ~~, N( ~i) CErn
, and a unique

f u n c t i o n  ge  C 1 ( N ( y ) ) ,  g:N(y )— 1’E 1
~, wi th  g(y)  = x and f(•g(y),y) = 0 for all

ycN(y).

The function g is said to be defined implicitl y by the equation

f(g(y) ,y) = 0. In the next theorem , the notation f~ is used to denote

the partial derivative of f with respect to its jth argument.

Theorem 4.2. If f .(x ,...,x ;v ,..•,v ) is analytic in a neighborhood of
j  1 k l

the origin for j  I,. . .  ,k, with f(0,0) = 0 and [3(f 1,. .. ,fk)/3(xI,.. .
X

K
) ]

exists at x = y = U , then the system of equations f .(x ,. . ., x ,K ;v ~) = 0,
j  1 1

for j  = l ,...,k, has a unique solution x . = x .(y1,.. . ,y~ ), wnicui vanishes

f~ r y = I) and which is analytic in a neighborhood of the ori gin.

Results of this type have particular applicability to sensitivity

ana l ys is in nonlinear optimization and have only recently been

exp loited. Hildebramdt and Graves [63] have provided results on the

existence and differentiability of solutions of equation (4.1). Cesari

—18—
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1 2 0 ]  has t’stabl i sh ed  c olJ (h i t I 0115 IIfl ( 1( ’ i ‘.-, h I i ( h  t h e ~~ 1U at  i on  f(v ,v) = 0 has

at least one sulu ti oti , ,uid dl sunse t ’s  t h e  t o u t  i i ~u t e  lt ’pt’ iult uut’ of  V

on paramet ers of the equal, ion. Rheinb oldt [~~3) has g i v e n  global

ex ist en L e t hee  rems f r the so F ut t on  of  (4 1) wh I cli I e o f  to a ‘‘ co ril_ nu—

at ion property ’’ . This continuat ion property has l i e n  app ! t eu t o  t b

sol ut  ion of p a r a m e t r I c  opt  iou I z at  i o n  p r o g r a m s .

F ia cc u  a o l  ~l u C o r m i k 45 ) p rov  i 1 l  , u I I ret app I i u  t ion of an

i m p l i c i t  f u n c t i o n  t l i c r v i i i  to o b t a i n i i g  s en s ct  i v i t v  i n t r i na t ~ o n a L u o u t

the solution o l  1 mathematical program . Sin ce then , addi tional results

in t h i s  a rea  have been obtained by Bigelow and Shap iro 14] , Arrnacost

and Fiacco [3 ,4,5,6), Armacost [1), Fi ucco [41], and Robinson ]9HJ .

In [94], Robinson provide J a imp licit function theorem for

variational inequalitie s of the form

0 c f ( x ,:) + T(x). (4.2)

whe re t ~X xP E° , N is 30 open set  in an~ P is a topological space ,
and U :E~~ E~ i s  a maxima l :~eu i t o ne  o p e r a tor . R o b in s o n  showed  t h a t

if ( is continuously (Fre~’he’t) d i f l c r e nt i a h l L  on X~ I ’ , and X C X  is
0~~

nonernp t’~’ and u iende~~, t i~~ n the set of solutions S(c) of  (‘~
. 2) is

u.s.c. in a neiglworuood of c = S(c) = N ; and for each 6 > 0 ,
0

0 ~ 5(c) CS(c) 1- (~ + 1) ct(c) B , (4.3)

who re

a (c ) = max { H f ( x ,~ ) — f (x ,0)H: xcX :,

B is the unit sphere in E~~, and A is a Lipschitz modulus regulating

(Lf + T)
1
. Here ,

L f ( ~ ) = f ( x , c ) + F(x .c) [ ( . )  — x l

where F, the Frechet derivative of f, is positive semi—definite and

(Lf + T)
l (0) = K0 .

As Robinson indicates , nonlinear comp lernentari ty problems , and th u s

the Kuhn—Tucker conditions for mathematical programming , can be w r i t t e n

—19—
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in the form of (4. 2). Robinson ’s r e su lt (sue 95 ])  wh et i  appli ed to

l in ear  equat ions  of t h e  f o r m

0 c Ax + a + T(x), (4.4)

whe re A is an n x n mat r ix , acE~~, and T(x)  is the s u b d i f f e r e n t i a l  opera-

tor of the indicator  funct ion of a nonempty polyhedra l  convex set ,

leads to the relation

0 ~ S(A ’ ,a ’) ñ X C S(A ,a) + Ae ’(1—Xc ’)~~( l+u)B . (4.5)

He re S(A ,a) is the set of solut ions of ( 4 . 4 ) ,  K is any bounded open

set containing S(A ,a ) ,  c ’ = max {J~ A ’—A j j , a ’— a H } , ~i is a bound on

S(A , a) and A is a Lipschi tz  modulus for [A ÷ a + T] ’.

These results can be applied d i rec t ly to quadrat ic  programs , and in

that context (4 .5 )  can be viewed as an extension of Daniel ’ s [22] resul t

on the solution s tabi l i ty  f o r  de f in i t e  quadra t ic  programs , which

although it does not involve an implici t  func t ion  theorem , is given

next for comparison with (4.5). Daniel conside rs the program

mm ‘~ (x ’Kx) - xk

s . t .  G x < g

Dx = d ,

where K i s  posi t ive de f in i t e  and symmetric wi th  A > 0  i ts  smallest

ei genvalue . Le t t ing  be the ‘2 norm , 1)aniel obtained the following

special case of (4.5).

Theorem 4 .3 .  If c = m a x { I j K ’— K H , I I k ’ k~~I } ,  then for  c >

- x H  < c  (~ -c)~~~(1 + H x H ) ,

where x solves the program above and x ’ solves that  program when K ’

and k’ rep lace K and k , respectively.

—20—
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5. F i r s t-  and Second—Order  S e n s i t i v i t y_Anal ys is

Using additional assump t ions , a number of stronger results have

been ob ta in ed  w h i c h  c h a ra c t e r i ze  more c o m p i e t t I v  the  relations hi p

between a solution set and the optimal value fu n c t i on  of a math eni a—

t lca l  program to general p e r t u rb a t i o n s  appear ing  simul taneous ly

in the ob jec t i ve  f u n c t i on  and anywhere in t h e  cons trui et s. i i i • .se

problems genera l ly  have the  fo rm i’,~( c ) ,  which we t r e at e d  b r i e f l y
in Sec t ion  3 and we I c ~~o it 1atod as fo l l o w s :

minimize  f ( x , c)

s . t .  g(x , u )  - ‘ 0 1
4

(L )

h (x ,c) = 0 ,

u k 1 n k m r ~where : f : l .  x E ~~~~E , g : E x E ’ E , a n dh: I- ~
’ : \l •~~~ 1) .

Fiacco and McCormick [4 5 ~ have o h t a i i ~ed  c o n d i t i o n s  w h i c h

guarantee the existence of a dif feriet iab le funct~ er . of c which

locally solves a p a r t i c u l a r  f o r m  of P4 ( a ) .  Fiacco [ 4 i ~~, A r inacost

and Fiacco [3 ,4 , 5 , 6 ] ,  and Robins on  [ 9 8 ]  have extended this result

to programs in which  the p e r t u b at i o n s  appear  as in P
4

( e ) .  All  of

these resul ts  rely on a f o r m  of t h e  i m p l i c i t  f u n c t i o n  theorem in

order  to es tab l i sh  the existence of a d i f i r r e n t i a b l e  so lu t i on  of

P
4
(t). The next theorem , due to Fiacco [ - ~ i J ,  establ ishes the

existence of a once continuously different ial le (local) solution

of P4 (c ) .

Theorem 5. 1. If

Fl)  f , g, h ar e C2 in (s, ) in ,u nei ghborhood of (x *, 0 ) ,

F2) the second—order  s u f f i c i e n c \  c o n d i t i o n s  hold at

[x *, u *, v*J

F i )  t h e  linear independence (LI) assumption holds at x~ , and
*F4) ~i .  > U for a ll i su cu  th a t  g . ( x *) = 0 , i.e., s t r ic t
L 1 

*
• complementary slackness (SCS) with resp~ ct to u ho lds

at  x ”~.

—21 --
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the n

i) x~ is a local isola ted m i n i m i z i n g  p o i n t  of P 
4

(0) w i t h

unique Lagrange multi pliers u*, w*,

ii) for e near 0, there exists a uniq ue C1 funcLion

y ( c )  = [x(L),u(c),w(  ) ]  s a t i s f y i n g  the  second—order

sufficiency conditions for problem P
4
(c), with

y ( O )  = [x *,u*,w*], and
i i i )  for  ne~L r U , the grad ien t s  of the binding cons t r a in t s

are linear ly independent , and s t r i c t  comp lementary

slackness holds fo r  u ( c )  and g(x , c ) .

J i t t o r n t r u m  [ 70] has ob ta ined  r e s u l t s  that  do not  require  the

strict complementarity condition (F4). Under these weakened assump-

tions, (i) and (ii) (less the differentiability of y(r)) pertain ,

along with the local differentiability of f*(t) I (x(c),c) at c = 0.

[n add i t ion , the t r ip le  ( x ( e ) , u ( t ) , w ( c ) )  is shown to s a t i s f y  a

Li p sch i t z  condit ion in each of i ts  components at e = 0 .

Sp ingarn [110 ] has also extende d the above result  b y consider ing
the problem 1~~(c) with additional constraints that restrict ~ to a C

2

submanifold , P , in E k 
and restrU’t x to a “cyrtohedron” of class

c2 in En . He has shown a ce r ta in  set of second—order  conditions to

be necessary for  o pt i m a l i t y ,  and tha t  these condi t ions  also imply

the  resul ts  obtained by Fiacco [41] .  Before s t a t ing  this  resul t ,

we must introduce aduitional notation and define several terms .

This notat ion follows that found in [110].

Let A and B he finite (possibl y empty) inde x suts , and fo r  i • A  and
j cB , let {g . }  and ( h . }  be f i n i t e  col lect ions of C1 f u n c t i o n s  d e f i n e d

and the open set U C E .  Also,  for x~ U and A ’ C A , let

r(x,A ’) = {V g .(x): i’~A ’ } U {Vh~ (x ) j c B } , and

Z ( ~~’)  = (xcU:g.(x) = 0 = h.(x) for all icA ’ and j e B~~.

—22—
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D e f i n i t i o n  5 .2 .  Let S be a nonuempty connec ted  subse t  of E~~. Then ,

for K � l , S i s  a cyrtohedron of c l a s s  i f  t her e  e x i s t  se ts  of

f u n c t i o n s  {g ~~ f or i~~\ and { h. }  fo r  j u B , d e f i n e u  on a ne ighborhood N

of x* E n w i t h :

i) x~~~~(A) , and for y N , x oS if and on ly if g.(x) � 0

f or all i A and h .(x) = 0 fo r  a l l  j B ,

i i )  If —~~~a V g .  +~~~b .VL.  0 for  some a . ,  b . w i t h  a . > 0 , then

a . = b. = 0 for  all i , ] ,  and
1 3

i i i )  AcI A1C A  and i ( x ~~,A1
)~~~span F ( x *,A )  implies that

Z ( A ) = Z(A
1
).

Consider now the problem p
~~(c) which is P4

(b) w i t h  the  additiona l

constraints mentioned above . The following definition contains condi-

tions which are sufficient for optimalitv in P~~( 
) .

D e f i n i t i o n  5 . 3 .  Let S be a cyr tohedron  of class C2. The point y*

(x*,u*,w*) is said to satisfy the strong second—order conditions for
if:

I)  x*c {x : g ( x , c) > O}fl  (x : h (x , r )  =

ii) — V L ( x *, u * ,w *, c)  is the  re la t ive  i n t e r i o r  of t h e

normal cone to S at x~~,

i i i )  the gradients of the cons t ra in t s  tha t  are binding at

x* are linea rly independent ,
iv) fo r  each i = 1,... ,m , u’~ > 0 if and onl y if g .(x *,r) = 0 ,

and

v) z ’ [ V 2 L (x * ,u*,w*, c)  + K ( V L ( x *,u*,w*, c ) ) ] z  > 0  for all

non—zero  z c E’1 fo r  which

a) z is in the  largest linear subspace contained in

the  tangent  cone to S at xr ,

b) z ’ Vg . (x * , c) = 0 for  all icB * (c) ,  and

c) z ’ Vh . (x * , c) = U fo r  j  = 1

—23—
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where K ( . ) ,  the  c u r v a t u r e  of the f ac ia l  subm ani fo ld  of S wh i ch

contains  x*, is an fl x n m a t r i x ,

If the set S is taken to be E~~, then P~ ( L )  r~’ d i n u e -  to t he i~r o~~r arr

and (ii) and (v )  above be come ’ t h e  f am i l i a r  cond i t i ons

ii ’) VL(x ~~, u*, w~~, c) 0 , and
2 nv ) z V L(x*,u*,w*,r )  z > 0 for  all non—zero  zeE for  w h i c h

(b )  and (c) above hold .

With th is  background , we now s ta te  Spingarn ’ s result .

Theorem 5.4. Consider the problem P~~(c). If the strong second—order

condi t ions  hold at y *=(x *,u*, w*) cS x E
m x E 1D

, ~ in E
k
, then t h e re

exist neighborhoods NCE
k 

and Xc E~ of o* and x’~ respectively, and a

f u n c t i o n  y ( c )  = (x ( c ) ,u(c),w(c)) defined on N such that:

i) y ( e )  s a t i s f i es  the strong second—order  condi t ions  f o r

ii) for  each c in ~~~, x( -) is an i sola ted  ic -al m in i m i z e r

for  P~~( c ) ,  and

i i i)  fo r  each c in N , the Lagrange multipliers u(e), w ( r ) ,

associated with x(c) are uniquely determined .

Under sligh tly weaker assump tions than those L n ~ o kcd b~ F i ac c o

[41] , Robinson [98 1 has obtained results s imi lat’ to those sL:et~~d in

Theorem 5. 1, p rov ing  the cont inut  tv of the Kuhn—Tucke r t r i p le , and us ing

the results to derive bounds on the  va r i a t i on  of y ( c ) .

Theorem 5.5. Let B be a Banach sp ace, S C B , N C E”, w i t h  X and S open sets.

Let f , g,  and h have second partial derivatives with respect to x wnich

are jointly continuous on X x S. For c* in S. suppose (x *, u~~,w~~) is a

~Cuhn-Tucker triple of 
P4
(e). Also assume that II , SCS , and the

second-order sufficiency conditions app ly at (x~~,u~ ,w
*). l’hen

—24—
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1)  there  e x i s t s  a c o n t i n u o u s  f u n c t i o n  y(L) with

= (~~~~u* w*) and fo r  each  c in S , v ( e )  is C a t -  u n i q u e

Kuhn-Tucker  t r i p l e  of P
4 (~~) and the  uniquc ’  zero of

I V L ( x  , U , w , , u g (x, c) , . . . , g (x , c~~, h 1 (x , -) , . . . ,h (x  , c)  J1 1  m m  • p
ii) for e near ~~ x(c) is am isolated local mi n imizing

point  of P4 (c ) ,  and

i i i )  LI , SCS , and the second-order  s u f f i c i e n c y  c o n d i t i o n s

ho ld fo r c near c*.

Theorem 5.6. Under the hypotheses  of the p r ev ious  theorem , fo r  any

Ae (0,1), there exist neighborhoods NA 
of e~

’ and N
~ 

of (~~~,u*,w*) such t h a t

for any c in N
A 

and any y in N A we have :

- y(c*)(( (1 A) 1 M (y( e *) , c *)~~~{ .  IIC (y,~)H,
where M is the Jacobian of G = I VL(x ,u ,w ,e), ~~~~~~~~~~~~~~~~~ h 1,. .. , n ] .

I f  i n s t ead  of the L a g r a n gi a n  of P
4

(c)  we consiner the l o g a r i t h m i c —

quadratic penalty function: p

W(x ,c ,r ) = f ( x ,C) - r tn (g(x,c) + l / ( 2r )  
j~~l 

h ( x ,~~) ,

we hav e the f o l low ing theorem du~ to Fiacco 134 1.

Theorem 5.7. Assume ( F 1) - ( F 4 )  above . Then , in a neighbo rhood of

(e ,r) = (0,0) there exists a uni que , once continuousl y differentiable

function y(e,r) [x (e,r),u ( e ,r ) , w ( e ,r)J satisfying :

(KT1) VL(x,u,w,ti) = 0

(KT2) u.g.(x,r )  = r i = 1,.. .,m , and

(KT3) h .(x,e) = w r  j  = 1,..
3 3

wi th y(0,0) = [x~~,u*,w*J . Furthermore , f or any ( c ,r) near (0,0) with

r > 0, x (c ,r) is a locally unique unconstrained local minimizing point

—25—
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of W (x , € , r) with g (x (~ , r)  , c ) • ‘ () I or each i = I 
* 
. . . m , and .

~~~~~ 
( x I , r )  , —

positive definite.

Using a number of the results stated above , F i a t t o  141] has obtained

first-order (Taylor) approximations of y(e). The existence of higher

order derivatives of y(c) is easily seen to depend on the degree of

(continuous) differentiability of the problem f u n c t i o n s .  This follows

d i rec tly from an app lication of the imp l icit function theorem (cf. 1 13]) .
An analogous result holds for y(c ,r). In fact , F iac co 141 1 ha s sh own
that , under the appropriate conditions , not only do h ighe r order
derivatives of y (c ,r) exist , but these derivatives converge to the

corresponding derivatives of y(c).

Theorem 5.8. Let f, g, and h have continu ous de riva tives of a l l  orders
up to k+1. Assume that (F2)-(F4) app ly. Then , in a neighbo rhood o f

(c, r)  = (0,0 ) ,  there exists a unique function y(c ,r)r

y(c ,r) = [x(c ,r),u( c ,r ) , w(c ,r)] satisfy ing (KTI)—(KT3), wi th

y(c ,r)-* y(c), and

[d3 /de 3 ]y (e ,r)~~[d
3 /d e 3 ]v(c) j  = 1,... ,k,

as r-~ 0 for (c ,r) near (0,0).

Arriacost and Fiacco [2] have illustrated computational aspects of

the convergence properties outlined above . Using the SUNT (Sequential

Unconstrained Minimization Technique) computer code developed by

My lander , Holmes , and McCormick [91] , and a subroutine for  sens i t iv i ty

anal ys is coded by Armacost and Mylander [7] that implements a procedure

based on the results  given in Theorems 5.12 and 5.13 , they demonstrated

the convergence of the first partial derivatives of the optimal solution and

the optimal value function of several problems. Subsequently , ~\rmacost

and Fiacco [6] used th is computer program to analyze the behavior of the

solution of an inventory problem relative to changes in several p roblem

parameters.

Armacost and Fiacco [6] have establish ed the first— and second—order

changes in the o, t imal objective function of the problem P
4

( e ) by way of

th e following theorem .

—26—
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Theorem 5, 4 . Assum e t h a t  (Fl) - ( } ’4 ) h o l d  f o r  i’
4
(t). Then , in a nei g hbor-

hood oh  ~ = 0, the extrema l value tuncti on f
~~~~
) is twice o u t i i i u o u s l y

d i f f eren t iabl e as a func t ion of c ,  and

i) f*(c) = L~ (c),

ii) V~ t*(e) = u(c),w ,),r) , and

iii ) V2f*(c) = V [ V L(x(c),u(c),w (c),c) 1.

This sensitivity result , obtained for the usual Lagrangian , has

been extended by Armacos t and Fiacco [3] to the augmented Lagrangian

used by Buys [181 and Buys and Gonin (19 1 to obtain related sensitivity

r e s u l t s .  The augmented Lagrangian is defined as:

~ (x , u , w , t, c) f (x , e) -~~~~ (u . - ( l / 2 ) c g . ( x ,e ) ) g ( x ,c)
p i cJ 1 1

+ ~~ (w~+ (l/2)ch .(x,e))h .(x,c) - ( l/ 2 c )~~ u , ,
j=1 3 ‘~ irk ’

where 3 = (i:u - cg(x ,Q ) >O~ and K ti:u - cg(x ,0)< 0).
1 j 1 1

Theorem 5jj~ 
Under the assumptions (F1)-(F4) , for  c near 0 and c >

there exists a unique C
1 

function y(c ,c) = [x(t ,c ) , u(c~ c),w(c ,c),u(c ,c ) ]
sat i s fy ing :

i) V~~(x ,u,w ,e ,c) = 0

ii) u .g(x,c) = 0 i = 1 ,... ,m , and

iii) h~x ,c) = 0 j  = 1 ,...

with [x(c ,c),u(c ,c),w(c ,c)j y(c). Furthermore , fo r any c near 0 and

c > c~ we have that x(c ,c) is a locally un ique un cons trai ned local

minim izing point of q,[x ,u(r ,c ) , w(c ,c),c,cl and V2~ is positive

defin ite for [x ,u ,wJ near [x*,u~’,w*j.

Armacost and Fiacco [5] have also obtained first- and second-order

expressions for changes in the extrema l value function as a function

of right hand side perturbations . Consider the problem

m inimize f(x)

s.t. g(x) > i = 1,... ,m P 3(c)

h (x)  s . = 1,...
j’fm

—27— 
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The L.~ig ra r ig  i an  f o r  P

3 
( L )  is g i v e n  h )y:

L (x , u , w , c)  = f ( s )  —~~~ u [g(x) c w I h i I x )  — ~:i 1  I i 1 j 1  j j j +m
The ~o1 l o w i n g  t h e o r e m  app l i e s  to t h i s  c o n s t r u c t .

Theorem 5 .11 . Let 1- , g, and h be twice continuously differentiable in x

in  a n e i g h b o r h o o d  of x~ f o r  c near  0. Assume ( F 2 ) - ( F 4 )  app ly to p
3

( e ) .

Then , in 1 neighborhood of c = 0,

V ~*(~ ) = [u(c),—w (c)J and

ii) ~~f*(e) = [ V  u ( c ) , - V w ( c ) ] .
C



p——- .’ c — 
~~ ~~~~~~ ~~~~~~~~~~~~~ ~

-
,—--

6. Additional Results L Apj~l icat ions and F u t  u r e Re~ t i r ~~h

We have endeavored  t o  pr esent a number 01 b a s h  & o n t  r i h u t  i on s  to  t i e

theory ol s e n s i t i v it y  and stabilit y analysis f o r  ~t 1R-r a. l  classes of nonlinear

programming p r o b l e m s .  h o p e f u l l y ,  we have c a p t u r e d  t l i t  m ain t h r u s t  and range

of developments  fo r  the  static nonconvex  d e t e r m i n i s t i c  ~r ) b 1 e m  t h a t

relate the behavior of the op t ima l va lue  or su l u l i o s  set to perturbations

of problem parameters. We have in t h i s  brief a c c o u n t  o m i t t e d  a number of

interestin g results and implications that weave the  f u h r i c  more t i gid I y ,

and we nave not  covered results that significantly exploit sddition al

problem structure. In particular , there are numerou:~ results obtained

by Rockafellar in his book [104] and in several papers that utilize

convex i ty  and d u a l i t y  p r o p e r t i e s  to cha rac t e r i ze  s t a b i l i t y .  G e o f f r i o n

[ 5 2 j  , Gol ’stein 157 1 * HoWan 168] and o t her s  hav e also c o n t r i b i u o ’u  f u r t h e r

basic results in convex programming . Quadratic programming stability

characterizations have been rather thoroughly developed by 8oot ~l7],

(:udd at 1601, and )aniel 122 1 , whit~ the p a r a m e t r i c  ranFe ana lys i s  techniques

for linear programming are now well—known and routinely imp lemented , w i t h

the stability characterizations being further extended by >lills [88],

Williams (113], Dantzig, Folkman and Shapiro [25], Berean u 112], Martin

[811, and Robinson [95,100]. Further results involving the exploitation

of other structures , f or example by Deinb o [26] for geometric programming,

have recently been obtained , and others , e.g., for  separabl e 136 ] and
factorable programming [85] should be forthcoming .

It should also be emphasized that more general treatments of parametric

stability results have been obtained recently, primarily by Robinson

(94—101], who has provided both a basic theoretical framework and a

number of deep stability characterizations . Their generality encompasses

app l i ca t ions  to complimentarity and equlibrium proc]ems , as well as to

m a t h e m a t i c a l  programming problem s , both in f i n i t e  and i n f i n i t e  dimensional

spaces , and involve effective use of monotone operators , convex ana lysis

and contemporary techniques. We should also mention the  many genera l

results obtained by Kummer [74] which synthesize a good hit of the theory

utilizing the point—to—set napping constructs.

-29-



We s h o u l d  also ment ion t h a t  an ont i n . bod y of t n e u r y  
* 

sotTlewl at  more

ge nera l  h u t  t o  ~i g r ea t  e x t e n t  ~iflO I h u g o i o - ~ tO t i e  t i c 0 \  in’~o1vi ig parametri c

var iat  ion , has di ve loped more or 1 c r 5  in p it ill ci wi t h t h e  p a r a t n e t  r Ic

theory. Ih i s i n v o l v e s  t h e  stud y of t h e  e f f e c t s  of genera l  p e r t u r b a t i o n s

01 the p r o h i  00 f u n c t i o n s  on so lu t  ion b e h a v i o r .  For example , cons ider
k k F k kmin i (x)  s .t .  g ( x l  ~ 0 , h (x) = 0 , w h er s  LI ie l uflctioiis * g ,

converge  in some spec ii iou sense to f , g, h , respectively, as k

Quest ions concerning the r e l a t i o n s h i p  of s o l u t i o n s  of  t k 
to so~ ut  ions 01

P . m m  f ( x )  s . t .  g ( x ) �  0 , h ( x )  = 0, al- c oi i n t e r e st  and obviousl y r e l a t e

to scflsitjvi tv and stabilit y qu e s t i o n s .  h umerous references could be

given here , in addition to tho se  a lr e d d v  p r o v i d e d fo r  the p a r a m e t r i c

perturbations w h i c h  are  c e r t a i n ly  r e l ev a n t  ( n o t i n g  t h a t  the  problem
h j V  be analyzed it = c b\’ ~-on :,jderiny pro l )  iem~- of  th0 form 

k 
where

f k~~~ = 

~~~~~~~ 
e t c . ,  whe re c k~ 

L as k -
~ ~) .  The i n t e r e s t e d  reade r

is re f e r r e d  to the recent work of Sal ine t ti  and Wets [106 ] t h a t  give s a

numbe r 01 inte resting results i nvolving sequences of conve x sets and

their application to convex stochastic programming as well as many

re fe rences to other work in this area. This application reminds us

that til e general  area of s tochas t  ic programming  has not been addressed

in th i s  sttrvc ’. 
* 
either , although the inevitable presence of uncertainty,

e . g .  p a r a m e t e r s  t h a t  a re  random va r i ab l e s , would obvious  lv suggest

that perturbation analysis re-;ults characterizing solut i on sensitivity

or stability would clearly be ap p licable . Explicit ru rnections have

alread y been made , as ~uggesLed by Saiinettj and Wets 106] anE also by

Be reanu Cl2,~.

hensitivity and stabilit y analysis results are ready f o r  extensive

computational imp lementation . Experimental results have unequivocally

demonst ra ted  the  practica l applicability of various computational schemes

that can generate a wealth of information that should be ext remely val-

uable to users . The most extensive computations have apparently been

performed by Armacost and Fiacco 12 ,6], utilizin g a computer program

now called “S E N F I M I ”. This interfaces a subprogram cal culating

sensitivity information with SUNT 191] and was developed by Armacost

and Mv lande r 17 ], based on t h e  t h e o r y  deve loped  by Fiacco [41]. l’hte

approach d e f i n e d  and val i da ted  in 141] is hi -~~~ on u t i l i z i n g  the

—30—
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i n l o r n i a t ion gent -ra ted by a solut i on a1~~ori t h i n t o  s i t U I , l t e  . i n s it i v i t V

i n f t i r n , i t  ion is a so lu t  ion is app ro uchiid . Ih ~ p a r t  i cu Hr  al gorithm f o r

w h i c h  t h e  t h e o ry  is deve loped in  d e t a i l  i n  141 is the al g o r i t h m  l : ~~cd

Oil t i l e  l o g a r i t h i n i i c — q u a d r a t i  m i x e d  b a r r i e r — p e n a l t y  f u n .- t i  on algorithm

f o r  the p r o b l e m  i n v o l v i n g  i i i e qu a i i t  ~ i’5 and eqi t l i Lies and ge n e  ral

parametric perturbations. h owever , tlic genera i i ;  t ac ; may

conceivab ly be appli ed co any a l g o r i t h m  and r h o i d  y i e l d  an c i li c le nt

p rocedure  f o r  a i d i n g  a s e n s i t i vi t y  analysis ca 1. ab i l i  Lv  to a n o n l i n e a r

programm ing code , onc e t h e  sen s i t i v i t y f o r m u L a s  appropriate tO t I e

general a l g o r i t h m i c  man ipu la t ions  and data o rgan i za t i ons  h a v e  ceO

ob ta ined .  A rmacost  and Fiacco [51 have ob ta ined  e f f i c i e n t  f o r m u l a s

f o r  the  gene ral p r o b l e m  in terms of the  given p r o b l e m  f u n c t i o n s

( w i t h o u t  p resup posi n g a g iven so lu t ion  al g o r i t h m  is u s e d) ,  and

have also developed formulas for a class of exact penalty functions

1 3 1 , the latter also having been obtained by Buys and Gonin [19].

Armacost [ 1 ]  h as obtained results in terms of an exponential

p e n a l t y  f u n c t i o n  and a general “sequential” class of H gorith;:s.

Fiacco  138 1 has provided results in the context of projected gradient

and reduced  g r a d i e n t  c a l c u l a t i o n s .  Recent  c o m p u t a t i o n a l  expe r imen t s

u s i n g  SENELMI have been conduc ted  by Fi acco and G1iaemi [42,43], who ,

fo r  example , make numerous inferences concerning the solution of

a 22—variab le stream—water i llution—abaternent model from an analysis

of the sen sitivit y information deriving from 64 model parameters .

i) inkel  and Kochenherge r [30,31] and Dinkel , Kochenberger and Wong [32]

have also  sp ort e d the  successful g e n e r a t i o n  of s e n s i t i v i ty

i n f o r m a t i o n  b r  severa l  geomet r i c  programs based on practical

examp les as well as the  value of r e s u lL i n g  i n t e r p r e t a t i o n s. Pre—

l imina ry  computa t iona l  work has thus  begun and the p r a c t i c a l  f e a s i b i l i ty

and app licability of generating rather intricate sensitivity information

for nontrivial nonlinear programming problems has been demonstrated.

Widespread imp lementation and routine use of this capability is now

en t h us i a s t i c a l l y encourage d and w i l l  h o p e f u l ly not  be long in

co m i n g .

—31—
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:onc~~r n i n g  thi ~ re gil i t  ion  b y  t i n ’  s c i e n t  i f i c  ceinmun i ty ni

mathemati cal pio grtill n i ls of  the- h oi t imn cc and y r i c t  ic ;il abi 11 Lv o l

geilerat ing seilsi tivi t v  jut Ot mat ion as p ar t  of t h e  usual output of

a nonlinear pro gr unT i n g code , wi n o t e  tha t  in a c I t  1 i onna I Y :  
* 

‘‘S~ y 0y

on Mathematica l Prog ramming  S o f t wa r e  P e r f o r m a n c e  In d i c a t o r s , ”

c i r c u l a t e d  b y t he  M a t h e m a t i c a l  P r o g r a m m i n g  S o c i e ty  in May 1979 , t w o

i tems s o l i c i t  i n f o r m a t i o n  r~- a n i  I n~ t h e  i m p o r ta n c e  a t t a c h e d  to t i

p r o v i s i o n  of s o l u t i o n  s en s i t i v i t y  i n f o r m a t i o n . We ire happy to  s e

the emergence of i n t e r e s t  in t h i s  v i t a l  r e q u i r e m e n t , b u t  a rc  d i s t i r s e u

that the interest is so modest and late in arriving, even to soph i~ tic~it~~u

theoreticians and practitioners . In t h is con te x t , we a lso note  t h a t

t h e  f i r s t  conference to our kn wl e il gi; devo ted  ex c lu s i v e l y  to s e n s i t i v i tY

and s t a b i l i ty  ques t  ion s in :; l l t h l e m a t  i cal progra .im i iIg took p lace in May

1979 1401 .

Anothe r Irca of resea rcht in mat ic m a t i c ; i l  p r ograrn ~n 1n g  t a t  is

re levant  to s e n s i t i v i ty  and s t a b i l i ty  a n a ly s i s  is t i e  d e v e l op m en t  o f

bounds on the optimal value function value or on thc components of

an optimal solut ion vector. lli cse bounds are f r e q u e n t l y  ob ta ined  by

generating simpler function s that hound t he given problem functions ,

e .g . , convex envelopes o f  t h e  c o n s t r a i n t  f u nc t i o n s , as in t i e

separable nonconvex pro grar:ii ;in .~ approach of Falk  and Soland [36 [ or

convex undere stimating or concave ove restimating functions , as in

the nonconvex f ac to r ab l e  programming approach of Mo g or m ick  [85 1. But

once a procedure  fo r  generating simpler  “bounding  prob lems ’ is at

han d , it can generally be app lied to a perturbation of the orig in~~I

p r o b le m  to oh ta in “s imple ” ( e . g.  , convex)  bounding proF lems . I f

the pe r tu rba t ion  analysis of the  s imple r  associa ted p r o b lc ;s  is

t ractable then , once the relationshi p between th~ op t i m a l  s o l u t i o n  01

the perturbed bounding prob lems and the original perturbed prob lem

is understood , we have a procedure fo r  generat ing bounds on the

perturbed solution of the orig inal problem. Geoffrion 1 53] gives

a number of valuable insights and several computationally imp lemen tabl e

sche mes for  ob taining bounds on th e varia tion of the op timal val ue
fun ctio n of a g iven p roblem , in terms of bounds on t h e  v a r i a t i o n  of

the objective f u n c t i o n  of the given problem , for e x a i r l .  Bounds
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resul ts  such as those ob ta ined  by D a n i e l  2 2 ]  f o r  q u a d r a t i c  p r o g r a m m i n g ,

a sped f i c  ins tance  of w h i c h  wa ;; given in Theo rem 4. 1 , and r e s u l t s

at a ve ry hi gh level of generality obtained by Robinson [91] and

indicated in Sect  I (in 4 , g l v i n p  bounds on t h e  optima l solution ~ e t  i n

terms essential ly of bounds on the  ori ginal prob lem f u n c t i o n s , are

also app l icable  here . To our  knowled ge , there  has been no theoretical

or computational exploitation of the approach suggested in this

paragrap h , oth er than that reported by Geoffriou [53]. Development

of th is  idea , inc luding  a s tudy  of the connection with sensitivity

and s t a b i l i t y  theory of othe r procedures  fo r  gene ra t ing  solution bounds ,

for example , techniques utilizing t i e  use of interva l arithmetic

proposed by Rob inson [96] and Mancini and McCormick [78], and utilizing

many of the  resul ts  known fo r  systems of equat ions  such as tha t

ta i lored  to the Karush—Ku hn—Tuck e r condit ions b y Robinson [98] and

stated in Theorem 5,6, s h o u l d  be a subject of fruitful research .

Some app lications of sensi t iv i ty  and s t ab i l i t y  an a lysis in

mathematical programming are rather obvious , — g. estimation of

solutions of perturbed problems , given a solution of a problem with

given paraaeter values , and de termination of parameters to which the

opt imal  value or solution set is most sensi t ive. Most app l ica t ions

are reasonably well documented. We mention several here for

completeness , along with some references: (1) optimality conditions

[41 ,45], (2)convergence of algorithm s [87], (3) rate of convergence

of algorithms [98], (4) decomposition [54,76], aol (5) implicit fui ccion

minimization [28 ,65]. O t h e r  ap p l i c a t i o n s  can sure ly be made to
parametric nonlinear programming and deformation technique s [55 ,56 ,oj,

~ ) ], homotopv continuation methods [; , , , ], and to the d e r i v a t i o n ,

cond i t i on ing  and acce l e ra t ion  of a logr it hms  [41 ,45 1. Conversely ,

all of the  areas ment ioned  can u n d o u b t e d ly  unccver art abundance of

results tha t  are appl icab le  to s e n s i t i v i t y  and s t a b i l i t y  r e su l t s  in

mathematical p rogramming.

The future should see a unification of the powerful collection

of results that are now known and scattered t h r o u g hou t t h e  t i t e r i i t u r e .

The reade r may note that only one book has been devoted ent frely

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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results such as those obtained by Daniel [22~ for quadratic programming,

a specific instance of which was given in Theorem 4.3, and res ults
at a very high level of generali ty obtained by Robinson [91] and
indicated in Section 4, giving bounds on the optimal solution set in

terms essentially of bounds on the original prob lem functions , are
also applicable here. To our knowledge , there has been no theoretical

or computational exp loitation of the approach suggested in this
paragraph, other than that repor ted by Geoffrion (531. Development

of this idea , including a study of the connection with sensitivity
and stability theory of other procedures for generating solution bounds ,

for example, techniques utilizing the use of interval arithmetic

proposed by Robinson [96] and Mancini and McCormick [781, and utilizing
many of the results known for systems of equations such as that

tailored to the Karush—Kuhn—Tucke r conditions by Robinson [981 and
stated in Theorem 5.6, should be a subject of fruitful research.

Some app lications of sensitivity and stability analysis in

mathematical programming are rather obvious , e.g. estimation of

solut ions of per turbed problems, given a solution of a problem with
given parameter values, and determination of parameters to which the
optimal value or solution set is most sensitive. Most applications

are reasonably well documented. We mention several here for

completeness, along with some references : (1) optimality conditions

[41,45], (2)convergence of algorithms [87], (3) rate of convergence
of algorithms [98], (4) decomposition [54,76], and (5) implicit function

minimization [28,651. Other applications can surely be made to
parametric nonlinear programming and deformation techniques [55 ,56,oj,
b ’ ) ] ,  homotopy continuation methods [~~~,L 7  ,i J] ,  and to the derivation,
conditioning and acceleration of alogrithms [41,45]. Conve rsely,

all of the areas mentioned can undoubtedly uncover an abundance of
results that are applicab le to sensitivity and stability results in

mathematical programming.

The future should see a unification of the powerful collection

of results that are now known and scattered throughout the literature .

Th~ reader may note that only one book has been devoted entire1~’

L 
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to sensitivity analysis in mathematical p r o g r a m m i n g ,  the  book. b y

Dinke lbach  I 3~ 1, and that appeare d in 1969 and was confined to

l inea r  programming.  U n i f i c a t i o n  presupposes the  ex i s t en c e  of

enough in te res t ing  results to essential ly p rovide a s i g n i f i c a nt

body of theo ry, a methodology , and this has only been extens ively
developed in the recent past. Certain efforts to synthesize the

theory have begun. We mention the works of Dantzig, Folk man and

Shapiro [25], Rockafellar [104], Geoffrion [51], Gol’stein [57],

Hogan [67~ , Robinson [94—101], Gal [46], Fiacco [41] ,  Kummer [ 7 4] ,

Wets [112], Dembo [26], Koj ima 172 1, and, of course this survey. A uni—

f t hd  methodology will accelerate the understandir~~ of basic theory and

st imulate algorithms and sof tware  developments , and thus hasten

widespread and routine implementations.

—34—
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